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Summary

This project initiated various aspects of an ongoing study of
numerical/analytic techniques for the identification of periodic
solutions to functional differential equations. The techniques
developed apply to very general classes of equations, and have been
implemented on a variety of specific model problems.

"Local" techniques refer to methods that apply to the problem of

analyzing the Hopf bifurcation structure of small periodic orbits
of multiparameter systems. A FORTRAN code, BIFDE, was written to
analyze generic bifurcations of general systems with infinite
delay.

"Global" tracking methods have been developed to study the growth
and parameter dependence of global Hopf bifurcations.
Investigations have centered on the development of spline-based
approximation techniques and their implementation in a FORTRAN code
FDETRAK.



Research Objectives

As the beginning of a large on-going project on numerical
techniques for the analysis of general parameter-dependent
functional differential systems, emphasis was placed on the
establishment of the numerical characteristics of some of the
proposed methods. An algorithm of the PI for the analysis of the
bifurcation structure of Hopf bifurcations chosen to be implemented
in a general purpose code BIFDE. A graduate student, Archana
Sathaye was supported by the grant to assist in the implementation.

Both Fourier series-based and spline-based methods are potentially
valuable in the approximation of the periodic solutions (both large
and small) of general functional differential systems. A
particular model of neuron firing was chosen to investigate the
feasibility of the former, while spline-based methods formed the
basis behind a more general purpose FORTRAN code, FDETRAK.
Comparison of the two methods, as well as benchmark studies of the
latter, formed the bulk of this aspect of the project. A supported
graduate student, Toanhung Doanvo, assisted in this portion of the
project.

Research Status

Local Analysis: As suggested in the original proposal, a
special case of the Lyapunov-Schmidt based stability procedure
derived previously by the PI has been successfully implemented in
a FORTRAN code BIFDE, whose development, coding and testing
constitute the major portion of the Master's Thesis of Archana
Sathaye (reference [3] below), completed July, 1986 at the
Virginia Polytechnic Institute.

The package is modular, and consists of several routines which
perform one or more tasks. In conjunction with the routines
available in the package, the user is required to provide a few
routines that describe the specific system under study (eg,
bifurcation data, characteristic equation, quadratic and cubic
nonlinearity). It should be noted that the code now allows
numerical analysis of a much wider class of equations than
previously possible. The code has been written for VAX computers,
and suggests no difficulty in the analysis -f small to moderate
sized systems, given that one can obtain the prerequisite data
called for by the program.

The code has been extensively tested on models from the areas of
mathematical epidemiology and genetic repression. In the first
case. this numerical confirmed an analysis of the PI that treated
a 7:yclic epidemic model in the setting of functional differential
equations with infinite delay. The code treats the system as a
system of differential equations, a more natural setting.

A class of genetic repression models of Mahaffy was considered
next. Application of the code to this delay difference model was



direct, and allowed a substantial enlargement of the scope of the
numerical analysis over that originally done.

A third application was made to a model of "chugging" in liquid
propellant rockets. An analysis of the derivation of the linear
model of Tischer and Bellman revealed nonlinearities to be
attributed to viscous friction forces and fluid flow through the
fuel injection nozzle (Torricelli's law). These nonlinearities
were retained, and the resulting model was analyzed with the aid if
BIFDE. No previous attempts had been made to analyze the structure
of self-oscillations in such a nonlinear model. Our work suggested
the existence of unstable periodic orbits, which would be
consistent with experimental work cited in the literature.

Additional details are available in the cited thesis, which also
contains a code listing. With the completion of additional
testing, results of this aspect of the project will be prepared for
publication.

Global Analysis: Numerical tracking methods have been the
stress of a sizeable portion of the project. The long term goal is
to develop a portable automatic code for the tracking of Hopf
bifurcations in single-parameter systems, with identification of
stability and secondary bifurcations, as well as their evolutions.

Work with A. Castelfranco has been completed on the application of
Fourier series approximation techniques to a model of delayed
feedback in neural systems. Such methods, while accurate and
efficient in handling periodic solutions near point of Hopf
bifurcation, are not particularly suited for accurate approximation
of large periodic orbits. This observation motivates an alternate
spline based approximation scheme.

The PI has developed a working partially automatic curve tracking
code FDETRAK for the implementation of such a scheme. As is the
case of the code BIFDE, on input one must provide the specifics of
the model under study (eg, bifurcation data, linearizations). The
code automatically selects stepsize strategies to continue the
one-parameter family of orbits. Floquet multipliers are computed
by approximating the Poincare map associated with the periodic
orbits. in particular, a finite dimensional approximation of the
phase space lead3 to a finite dimensional approximati.,n of the
period map. Multipliers can then be approximated with the aid of
standard eigenvalue packages (eg, IMSL).

Currently, the code is designed to analyze a restricted class of
one and two-dimensional scalar delay difference equations.
Stabilities of periodic orbits are computed, and secondary
bifurcations from the primary branch are identified. Code
parameters set a variety of algorithmic variables such as spline
order, grid density, dimension of approximating phase space,
step-size criteria, frequency of multiplier calculation, stopping
criteria, etc.

Initial work in the Virginia Tech VAX 11/785 has shown this



approach to be beyond the capabilities of such machines.
Supercomputer time (Cray-2) was obtained from the Minnesota
Supercomputer Institute, and basic benchmarks were performed. A
30:1 improvement in running time was observed in comparison to the
same (unvectorized) code on the University of Minnesota - Duluth
VAX 750. Such results point to the need for the identification of
reliable, yet less time-consuming algorithms, as well as the
investigation of parallel algorithms. Supported graduate
student Tuanhung Doanvo (Virginia Tech) has concerned the use
of subspace iteration methods to speed the multiplier
calculations. Work along these lines continues.

As restricted as the code now stands. it has been tested on a
variety of delay-difference models, and has provided new
information about them. In particular, numerical work appears to
confirm a conjecture of Chow and Walther concerning the behavior of
a model from nonlinear optics. A epidemic model of Mackey has been
considered and the numerical results considered in comparison with
the work of Sternberg on the subject. Again, the algorithm is
highly reliable, although numerically intensive.

A copy of the code FDETRAK constitutes Appendix I of this report.

Research Publications

1. Periodic solutions in a model of recurrent neural feedback, by
A. Castelfranco and H. Stech, SIAM Journal of Applied Mathematics,
in press.

2. A numerical analysis of the structure of periodic orbits in
autonomous functional differential equations, by H. Stech, to
appear in Dynamics in Infinite Dimensional Systems.

3. BIFDE: A numerical software package for the Hopf bifurcation
problem in functional differential equations, by Archana Sathaye,
Master's Thesis, Virginia Polytechnic Institute, Blacksburg,
Virginia

(Six copies of each are submitted with this report.)

Research Personnel

Harlan W. Stech. Principal Investigator

Archana Sathaye, graduate student

Toanhung Doanvo, graduate student



CouDling Activities

Conference Participationt

Conference on the Dynamics of Infinite Dimensional Systems, May,
1986, Lisbon, Portugal.

Annual meeting of the Applied and Computational Mathematics Program
(DARPA), October, 1986, Boston, Mass.

Appendix I: FDETRAK
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fort.12 Thu Jun 25 01:25:52 1987 1

5 k - order of spline
2 order - order of fde being solved
3 net - number of subdivisions per step in simulation stage
40 m - number of steps in [-w, 0.] (dim - m+2)
.0001 tol - tol called for in IMSL DVERK
.1 to12 - tolerance called for in account
.5 rl - innermost spectral radius
.0005 dsmin - minimum step size
.0025 sdopt - optimal step size
.005 sdmax - maximum step size
.360 wO - bifurcation frequency
1.52194 p0 - critical bifurcation parameter
40 n - number of collocation points
4 iopt - optimal number of iterations
2 maxstep - maximun number of curvetracking steps allowed
2. maxznrm-max norm of curve in solutionXperiodXparameter space
2 unit - number if iterations per each call to IMSL ZSPOW
3 nsig - parameter called for in IMSL ZSPOW
10 itmax - max number of iterations per each step
1 interval - span between multiplier calculations
2 intype - 1 if Hopf Bifn; 2 if reading data from fort.10
1 ijob - 0 if cvalues only; ijob - 1 if cvalues + cvectors



A NUMERICAL ANALYSIS OF THE STRUCTURE OF PERIODIC
ORBITS IN AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS

Harlan W. Stech
Department of Mathematics and Statistics
University of Minnesota, Duluth
Duluth, Minnesota 55812

and
Department of Mathematics
Virginia Polytechnic Institute
Blacksburg, Virginia 24060 op( ..RM' sr

1. Introduction

Understanding the structure of periodic solutions in nonlinear,

autonomous functional differential equations is a problem that often

arises when such equations are used in the mathematical modeling of
*real-world" phenomena. Knowledge of the existence, stability, and

parameter dependence of such periodic solutions provides valuable

insight into the general dynamics of the system. Stable steady states

and periodic orbits are of particular interest since they correspond to

observable states in the system being modeled. However, unstable

steady states and periodic orbits are of importance as well since

(through variation of parameters in the model) these solutions can

themselves change stability and therefore, become "observable".

Numerical simulation of the associated initial value problem often

provides evidence of the existence of stable equilibria and stable

periodic orbits. However, it is of limited value in the study of unstable

solutions.

Linearization provides a straight-forward means of analyzing

equilibria and their stability types. A careful study of the associated

characteristic equation ideally leads to the identification of the subset

of parameter space at which a variation of the system parameters can



induce a qualitative change in the nature of solutions near the

equilibrium Generically, system parameters corresponding to the

existence of the characteristic value X-O correspond to branch points

of equilibria, while the existence of a complex conjugate characteristic

root pairs X-±iw correspond to the existence of small-amplitude

periodic orbits.

At parameter values of this last type (Hopf bifurcation) there is

now a straight-forward technique for the determination of the stability

and parameter dependence (i.e., direction of bifurcation) of such orbits

171. Fixing all but one system parameter, it is natural to ask how

variation of the remaining parameter effects the periodic orbit, inducing

changes of stability and secondary bifurcations. Towards this end, the

theory of global Hopf bifurcation is valuable in identifying the available

alternatives [21.

This paper concerns the use of numerical methods (other than

simple simulation studies) to aid in the analysis of both the local and

global natures of periodic solutions to parameter-dependent autonomous

periodic orbits. Section 2 discusses a numerical implementation ot the

Hopf bifurcation algorithm of 17]. Section 3 outlines the use of

numerical tracking techniques to determine certain information concerning

the global bifurcation picture in one-parameter problems. The

usefulness of such techniques is illustrated in Section 3, where the

result of the analysis of a model of nerve firing are described.

2. Lc Analysis

Consider the differential equation

x (t) - as(; X tt) ib.at

in which it is assumed that x-0 is an equilibrium for all values of the



system parameters aeRk. Somewhat arbitrarily, we have chosen

f :Rk xC - Rn, where C-C([-r,O), Rn) is the usual Banach space of

continuous Rn-valued functions on I-r,01; other phases spaces can be

used as well. Given adequate smoothness (which we, henceforth, assume

without mention), we may expand the right hand side in series form

x' (t) - L(a)x t + H2(a;xt,xt) + H 3(0;xtxtxt) - , [2.2

where L(a) is bounded and linear on C, and H2(a;.,.) and

H3(a.,.,. ) are, respectively, bounded symmetric bilinear and

trilinear forms on C.

The linearized problem reads

y' (t) - L(a)yt, 12.31

which has exponential solutions y(t) - S" • X t if and only if

IN - L(a) eX ' I  a (a;X) - 0. 12.41

We assume the existence of a critical parameter a-a c at which 12.41

has a nontrivial solution (i.e., detA(ac;%)-O) with \-±iw a purely

imaginary root pair. Assuming simplicit of the root iw, it is known

that the corresponding characteristic vector C is uniquely defined up

to a scalar multiple. Furthermore, the implicit function theorem shows

that there exists a unique smooth family X(a) of characteristic roots

defined in a neighborhood of a c in Rk and satisfying X(ac)-iw.

For a near a , we write X(a)-p(a)+iw(a) and - (a). For

simplicity, we assume that at a c there are no other purely imaginary

root pairs.

D tnDefine - (a).0O to be any solution of



~(a)(a;X(a))-O for a near a C. For X near X (a), let

~-~a;Xu*/[- *A' (a;X)f 1, where A' -8a/OX. By simplicity of

the characteristic value )X(a) the denominator above is nonzero.

The following theorem, whose proof may be found in [71, reduces

the problem of analyzing the existence of small periodic solutions with

frequence near w to that of considering a scalar *bifurcation function".

Theorem 2. 1: Under the above hypotheses, there are smooth functions

G(a;c,v) (C-valued) and x(t,a;c,m) (Rn-valued and 21r/v-periodic

in t) defined in a neighborhood of (acOw) in Rk xRxR such that 12.11

has a small 2ff/v-periodic solution x(t) with (a,v) near (acW) if

and only if x(t)-x(t,a;c,v) up to phase shift, and (a,c,vl) solves the

bifurcation equation

G(a; c, a.) -0. [2.51

Moreover,

x(t,a;c,p) -2 R(~'itc+02)1.1

G is odd in c, and has the expansion

G(a; c, V) - (X - Vi)c + M3(0; v, X)c 3+ O(cs 1,2.71

where X -)(a), M 3(0;vX)-C(a;X)-N(;)

N3 (a; v) a 3H ( 2 , ; ) + 2H 2,(;;,, 2 "' + -(p

with JP(s)- (a)et1 5 for s:50 and A, 2 ,' the unique solutions of

A(a; 2&,i)A, 2, - H,,



s6(a;O)A2, 0 - 2H [2.81

respectively.

The imaginary part o (2.51 can be easily solved (e.g., by

iteration) to obtain ,-wo(a)+O(c ). Upon substituting this into the real

part of 12.51, one obtains the "reduced" bifurcation equation

0 - g(a; c) . p(o)c + K 3 (0)c3 + O(c 5). [2.91

Given K 3 (0,),0, (the so-called "generic" case), one can show the

existence of nonzero solutions c-c (a) for values of a near a for

which sgn{p()))---sgn{K 3 (ac)}. If in the case k-i p(a) increases

with a and K3 (ac)<O, the solution of [2.9) near c-0 requires

p(a)>O (supercritical bifurcation). Similarly K3(Oc)>O corresponds

to subcritical bifurcation.

Concerning the stability of the associated periodic orbits, it is

known [71 that if all other characteristic roots have negative real parts,

then the periodic orbits posses the same stability type as that of c

when viewed as an equilibrium solution of the scalar ordinary

differential equation

c' - g(a; c) [2.10]

Thus, K 3 (a) < 0 corresponds to an orbitally asymptotically stable

periodic orbit, while K 3 (ac)>O corresponds to an unstable periodic orbit.

The above algorithm, although usually too involved to allow an

algebraic determination of the structure of Hopf bifurcations, does lend

itself to numerical evaluation. This has been recently implemented in

the FORTRAN code BIFDE by A. Sathaye [6). It is there presumed



that one can obtain from the linearized equation (2.31 analytic

expressions for &(a;X), as well as the partial derivatives of A(a;))

with respect to X and some (use-chosen) coordinate of a. It is also

assumed that one is able to identify critical values of the parameter

a for which a simple purely imaginary root pair X-±twi exists,C

and the other spectral assumptions listed above hold. Finally, it is

expected that H 2 (a; l,, 2 ) and H3 (a;, 2,193 ) can be evaluated,

where each of the arguments are of the form p,(s)-we s for

complex values z and complex n-vectors w.

Given the above data. BIFDE coordinates the calculation of the

left and right characteristic vectors " and (by inverse iteration),

identification and solution of the linear systems 12.81 (by Gauss

elimination with implicit pivoting) and the evaluation of N3 (hence, M3

and K 3). The program uses the partial derivatives of A(c; X) to

compute u' (ac) the partial derivative of u with respect to a

user-chosen coordinate of a. and thereby determine the direction of

bifurcation with respect to that coordinate of a.

The program is complementary to BIFDD of Hasard 15[ in that

BIFDD assumes [2.11 to be of delay-difference form, yet identifies the

required higher order terms numerically. In [5I, rather than making use

of Theorem 2.1, the stability and direction of bifurcation is determined

by center manifold approximation techniques and the Poincare normal

form

Remark 2.2: Given BIFDE or BIFDD. a principle difficulty lies in the

determination of the bifurcation data. That is. the critical value(s) of



the system parameters a and the associated frequency w of

bifurcating periodic orbits. For one-parameter problems (k-1), solution

of

det A(a; iw) - 0 12.111

can be obtained by standard rootfinding techniques (e.g., Newton on

Quasi-Newton methods) provided the size of the system n is not

prohibitively large, and a sufficiently accurate approximation to the

bifurcation data is known in advance.

For k large, one can seek bifurcation data by considering the

associated nonlinear minimization problem:

Minimize A(a;iw) I2 subject to the constraint that a and w

lie within a compact interval of w values and a lies within a

compact subset of admissable system parameters.

Precise approximations for this minimization problem, although useful in

specifying the above constraints, are not necessary.

For k-2, one expects the underdetermined system [2.111 to have

a one-parameter family of bifurcation data. Given one set of

bifurcation data (perhaps by considering the above minimization problem)

one can apply now standard continuation techniques to identify curves

in parameter space (a subset of R2 ) along which 12.111 has a solution.

Indeed, in many instances, this family of critical values can be

parameterized in terms of .) itself. A simple example serves to

illustrate the point.

Example 2.3: Consider an ordinary differential equation

x' (t) - f(x(t)); x E Rn 12.121

in which one coordinate x, of x is thought to act as a feedback in one

of the n equations in 12.12. In studying the effects of time delay in



this feedback, one replaces the appropriate term xj(t) with xj(t-r). To

determine the stabilizing/destabilizing effect on equilibria, one encounters

a characteristic equation of the form

p(X) + q(.)se-  . 0, [2.131

where p and q are polynomials, r corresponds to the length of the time

delay, and s represents a measure of the strength and type (positive or

negative) of the feedback. One can algebraically solve for r (then s) in

terms of X by considering [2.131 and its conjugate. The details are

elementary and omitted. Observe that this provides a convenient

reparameterization of [2.11 in terms of X rather than r and s in which

(generically) with Re{X)-O, Im{)} determines the location of ac on the

imaginary root curves in R , and with Ira() fixed, Re{.\) determines

the stability of the equilibrium.

3. Global Analysis

Consider (2.11 in the special case when k-I, and suppose that at

some critical value of the parameter ac the equation has been shown to

satisfy the hypotheses of Theorem 2.1. Equation [2.61 provides an

asymptotic estimate of the resulting one-parameter family of periodic

orbits bifurcating from the equilibrium. We discuss in this section

numerical methods for continuation of this one-parameter family away

from the equilibrium, calculation of the stability of the orbits, and

identification of secondary bifurcation points.

The numerical approximation of periodic orbits must not rely on

the stability type of the orbits if a complete global bifurcation picture

is to be obtained. For that reason, periodic solutions are viewed as

solutions of a boundary value problem of the form



Ma, T, x, xt ) - 0 13.11

x(t+1)-x(t), where F : RxR+xCxC - Rn. The independent variable t

has been scaled so that T-periodic solutions of (2.11 correspond to

I-periodic solutions of 13.11.
For periodic solutions x(t) of 13.11 we introduce the finite

dimensional approximation

X ()(t) - cj(t), f3.21
j-IJJ

where the Oj represent appropriate scalar 1-periodic basis functions

J

periodic B-splines are examples of approximations of this type. See (I1

and 131.
Collocation provides one means of computing the coefficients cj.

That is, for N distinct nodes t. chosen from [0.,.) one considers theJ

nN equations

F(a, T, x(N)(tp), x(N)(ty)) _ o I3.3a

in the nN+2 unknowns c,; j-l,....N, a, and T.

We adjoin to these equations a scalar phase constraint to remove

the indeterminacy due to the fact that the phase shift of any periodic

solution of 13.1J is also a periodic solution. In the case of trucated

Fourier series, this corresponds to simply setting one of the coordinates

of the primary Fourier coefficients equal to zero. However, there are

more sophisticated methods of instituting such a.constraint.

Finally, we adjoin a scalar equation in order to (in a sense)

specify which of the one-parameter family of periodic solutions is to be



computed. More precisely, given that a solution (ai,Ti, x(N)i) to (3.31

has been obtained, one seeks a solution (ai+,T i+ 1 ,x(N)i+l) that lies a

given arclength away.

Having obtained two points on the one-parameter family of

periodic orbits, one can linearly extrapolate ('predict') an initial

approximation to the next desired member of the family, then

iteratively improve that approximation ("correct") by solving the above

nN+2 simultaneous nonlinear equations by some Newton-like scheme.

It should be remarked that in the case of ordinary differential

equations, the use of B-splines has an advantage over truncated Fourier

series in that the Jacobian matrices encountered are sparse; the precise

structure being dependent only on the order of the splines in use. For

functional differential equations such sparsity is lost, with the structure

of the Jacobian dependent on the form of the equation 13.11 as well as

the parameters T and a. Despite this fact, splines possess certain

numerical characteristics which speak in favor of their use over

truncated Fourier series.

Having computed an approximation x(N) to [3.1] at the parameter

values a and T, one determines the stability of the orbit (and

identifies secondary bifurcation points) by computing approximations to

the orbit's Floquet multipliers. For equations with finite delay, some

iterate of the (linearized) Poincare map is compact [4]. The Floquet

multipliers are, therefore eigenvalues of finite multiplicity with zero as

their only cluster point.

Let X( M ) denote an NI dimensional approximation to the phase

space X in use. We assume X("'|)1 X and let P(") : X-X(.*') denote a

projection of X onto X(' ). The approximate (linearized) Poincare map is



defined to be

P(M - P(M 10 1 X(M, 13.41

where H is the period I map defined by the linearized equation

associated with [3.11. The eigenvalues of P( q serve as approximations

to the Floquet multipliers of the periodic solution to [3.1].

Finally, we remark that due to the autonomous nature of 13.11, 1

is always a Floquet multiplier (4]. This fact provides a useful monitor

of the overall accuracy of the periodic solution approximation x(N) and

the multiplier approximation scheme described above.

4. An Example

We conclude with a brief description of the results of applying

the methodology described in the previous sections to a model in

physiology. We refer the reader to [1] for details, and seek only to

indicate the kinds of information that can be obtained when applying

these ideas to a particular mathematical model.

The two dimensional delay-difference system

v' - h(v) - w + ;&[v(t - r) - vo]

w' = p~ v + a - bwl (4.1]

arises as a model of recurrent neural feedback. Here, h(v)-v-v3/3,

p>O is small, O<b<l, l-2b/3<al, and v0 is the v coordinate of

the unique equilibrium (v0 ,w0 ) that exists for (4.1! when pa-0. Fixing

p, a and b, one can consider the associated Hopf bifurcation problem

in the two remaining parameters r and u, which are restricted to be

positive and negative, respectively.

Linearizing about the equilibrium of [4.1], one obtains as



characteristic equation

0 - X 2 +(pb-a),+p(I+ba)-(juX+ppb)e-, r4.2]
where ,=fh' (v 0 ). As indicated in Section 2, one expects for this two

parameter problem that there should be curves of critical parameters at

which [4.21 possesses purely imaginary root pairs X=±wi. Since [4.21

has the form [2.13], one expects these "imaginary root" curves to be

parameterized by frequency w.

Figure 4.1 shows a few of these curves for p=.08, a=.7 and

b-.8. Along them one is able to determine the stability-determining

constant K3 by numerically implementing the algorithm discussed in

Section 2. Solid lines correspond to K3<0 , while dashed lines

correspond to K3>0. One can show that at nonintersection points of

the imaginary root curves the required spectral hypotheses hold, and

that for small p that all characteristic roots must have negative real

parts. Thus, [4.11 supports both stable and unstable periodic orbits.

If one additionally fixes r, one can apply numerical tracking

techniques similar to those discussed in Section 3 to the resulting

one-parameter problem. Figure 4.2 depicts the global bifurcation

diagram with r =25. Solid lines indicate stable periodic orbits, while

dashed lines correspond to unstable periodic orbits. See [I] for details.
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